Question

If $${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} = 1\left( {a > b} \right)$$      and $${x^2} - {y^2} = {c^2}$$   cut at right angles, then :

A. $${a^2} + {b^2} = 2{c^2}$$
B. $${b^2} - {a^2} = 2{c^2}$$
C. $${a^2} - {b^2} = 2{c^2}$$  
D. $${a^2} - {b^2} = {c^2}$$
Answer :   $${a^2} - {b^2} = 2{c^2}$$
Solution :
Let $$\left( {{x_1},\,{y_1}} \right)$$  be their point of intersection then
$$\eqalign{ & x_1^2 - y_1^2 = {c^2}......\left( 1 \right) \cr & \frac{{x_1^2}}{{{a^2}}} + \frac{{y_1^2}}{{{b^2}}} = 1......\left( 2 \right) \cr & \Rightarrow x_1^2\left( {\frac{1}{{{a^2}}} - \frac{1}{{{c^2}}}} \right) + y_1^2\left( {\frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right) = 0......\left( 3 \right) \cr} $$
Now tangents to the curves are $$x{x_1} - y{y_1} = {c^2}$$    and $$\frac{{x{x_1}}}{{{a^2}}} + \frac{{y{y_1}}}{{{b^2}}} = 1$$
The tangents are perpendicular, so
$$\frac{{{x_1}}}{{{y_1}}} \times - \frac{{{b^2}}}{{{a^2}}}\frac{{{x_1}}}{{{y_1}}} = - 1 \Rightarrow {b^2}x_1^2 - {a^2}y_1^2 = 0......\left( 4 \right)$$
Eliminating $$x_1^2$$ and $$y_1^2$$ from $$\left( 3 \right)$$ and $$\left( 4 \right),$$ we get,
$$\frac{{{c^2} - {a^2}}}{{{a^2}{b^2}{c^2}}} = \frac{{ - \left( {{b^2} + {c^2}} \right)}}{{{a^2}{b^2}{c^2}}} \Rightarrow {a^2} - {b^2} = 2{c^2}$$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section