Question
If $$x = 9$$ is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$ then the equation of the corresponding pair of tangents is :
A.
$$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B.
$$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C.
$$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D.
$$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Answer :
$$9{x^2} - 8{y^2} - 18x + 9 = 0$$
Solution :
The equation of tangent at a point $$\left( {{x_1},\,{y_1}} \right)$$ on the hyperbola $${x^2} - {y^2} = c$$ is given by $$x{x_1} - y{y_1} = c$$
Chord $$x = 9$$ meets $${x^2} - {y^2} = 9$$ at $$\left( {9,\,6\sqrt 2 } \right)$$ and $$\left( {9,\, - 6\sqrt 2 } \right)$$ at which tangents are
$$\eqalign{
& 9x - 6\sqrt 2 y = 9{\text{ and }}9x + 6\sqrt 2 y = 9 \cr
& {\text{or, }}3x - 2\sqrt 2 y - 3 = 0{\text{ and }}3x + 2\sqrt 2 y - 3 = 0 \cr} $$
$$\therefore $$ Combined equation of tangents is
$$\eqalign{
& \left( {3x - 2\sqrt 2 y - 3} \right)\left( {3x + 2\sqrt 2 y - 3} \right) = 0 \cr
& {\text{or, }}9{x^2} - 8{y^2} - 18x + 9 = 0 \cr} $$