Question

If $${x^3} - 1 = 0$$   has the non-real complex roots $$\alpha ,\beta $$  then the value of $${\left( {1 + 2\alpha + \beta } \right)^3} - {\left( {3 + 3\alpha + 5\beta } \right)^3}$$      is

A. $$- 7$$  
B. $$6$$
C. $$- 5$$
D. $$0$$
Answer :   $$- 7$$
Solution :
$$\eqalign{ & {\text{Here given }}{x^3} - 1 = 0 \cr & {\text{has roots }}\alpha \,\& \,\beta {\text{ which are complex}} \cr & x = \alpha \,\& \,\alpha = \omega \cr & x = \beta \,\& \,\beta = {\omega ^2} \cr & {\text{Now, }}{\left( {1 + 2\alpha + \beta } \right)^3} - {\left( {3 + 3\alpha + 5\beta } \right)^3} \cr & = {\left( {1 + 2\omega + {\omega ^2}} \right)^3} - {\left( {3 + 3\omega + 5{\omega ^2}} \right)^3} \cr & = {\left( {1 + \omega + {\omega ^2} + \omega } \right)^3} - {\left( {3\left( {1 + \omega + {\omega ^2}} \right) + 2{\omega ^2}} \right)^3} \cr & {\text{As we know, }}1 + \omega + {\omega ^2} = 0 \cr & = {\left( {0 + \omega } \right)^3} - {\left( {3\left( 0 \right) + 2{\omega ^2}} \right)^3} \cr & = {\omega ^3} - 8{\omega ^6} \cr & = 1 - 8\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\omega ^3} = 1} \right) \cr & = - 7 \cr & {\text{So, }}{\left( {1 + 2\alpha + \beta } \right)^3} - {\left( {3 + 3\alpha + 5\beta } \right)^3} = - 7 \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section