Question

If $${x^2} + {y^2} + {z^2} = 1$$    then the value of $$xy + yz + zx$$   lies in the interval

A. $$\left[ {\frac{1}{2},2} \right]$$
B. $$[ - 1, 2]$$
C. $$\left[ - {\frac{1}{2},1} \right]$$  
D. $$\left[ { - 1,\frac{1}{2}} \right]$$
Answer :   $$\left[ - {\frac{1}{2},1} \right]$$
Solution :
Let $$xy + yz + zx = \lambda .$$    Then
$$\eqalign{ & {x^2} + {y^2} + {z^2} - \lambda = \frac{1}{2}\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right] \geqslant 0 \cr & \Rightarrow \,\,1 - \lambda \geqslant 0. \cr & {\text{Again, }}{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2\lambda = 1 + 2\lambda \cr & \Rightarrow \,\,1 + 2\lambda \geqslant 0. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section