Question

If $$\frac{{w - \overline w z}}{{1 - z}}$$   is purely real where $$w = \alpha + i\beta ,\beta \ne 0\,{\mkern 1mu} {\mkern 1mu} {\text{and}}\,\,z \ne 1,$$      then the set of the values of $$z$$ is

A. $$\left\{ {z:\left| z \right| = 1} \right\}$$
B. $$\left\{ {z:z = \bar z} \right\}$$
C. $$\left\{ {z:z \ne 1} \right\}$$
D. $$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$$  
Answer :   $$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$$
Solution :
$$\because \frac{{w - wz}}{{1 - z}}$$   is purely real
$$\eqalign{ & \therefore \,\,\overline {\left( {\frac{{w - \overline w z}}{{1 - z}}} \right)} = \left( {\frac{{w - \overline w z}}{{1 - z}}} \right) \cr & \Rightarrow \,\,\frac{{\overline w - w\overline z }}{{1 - \overline z }} = \frac{{w - \overline w z}}{{1 - z}} \cr & \Rightarrow \,\,\overline w - \overline w z - w\overline z + wz\overline z = w - w\overline z - \overline w z + \overline w z\overline z \cr & \Rightarrow \,\,w - \overline w = \left( {w - \overline w } \right){\left| z \right|^2} \cr & \Rightarrow \,\,{\left| z \right|^2} = 1\,\,\,\,\,\,\left( {\because \,\,w = \alpha + i\beta \,\,{\text{and }}\beta \ne {\text{0}}} \right) \cr & \Rightarrow \,\,\left| z \right| = 1\,\,{\text{also given }}z \ne 1 \cr} $$
∴ The required set is $$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\} = 3\omega \left( {\omega - 1} \right)$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section