Question

If $${u_n} = \int_0^{\frac{\pi }{4}} {{{\tan }^n}\theta \,d\theta } $$     then $${u_n} + {u_{n - 2}}$$   is :

A. $$\frac{1}{{n - 1}}$$  
B. $$\frac{1}{{n + 1}}$$
C. $$\frac{1}{{2n - 1}}$$
D. $$\frac{1}{{2n + 1}}$$
Answer :   $$\frac{1}{{n - 1}}$$
Solution :
$$\eqalign{ & {\text{Given : }}{u_n} = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^n}\theta \,d\theta } \cr & \Rightarrow {u_n} = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}\theta \,{{\tan }^{n - 2}}\theta \,d\theta } \cr & \Rightarrow {u_n} = \int\limits_0^{\frac{\pi }{4}} {\left( {{{\sec }^2}\theta - 1} \right)\,{{\tan }^{n - 2}}\theta \,d\theta } \cr & \Rightarrow {u_n} = \int\limits_0^{\frac{\pi }{4}} {{{\sec }^2}\theta \,{{\tan }^{n - 2}}\theta \,d\theta } - \int\limits_0^{\frac{\pi }{4}} {{{\tan }^{n - 2}}\theta \,d\theta } \cr & \Rightarrow {u_n} = \int\limits_0^{\frac{\pi }{4}} {{{\sec }^2}\theta \,{{\tan }^{n - 2}}\theta \,d\theta } - {u_{n - 2}} \cr & \Rightarrow {u_n} + {u_{n - 2}} = \int\limits_0^{\frac{\pi }{4}} {{{\sec }^2}\theta \,{{\tan }^{n - 2}}\theta \,d\theta } \cr & \Rightarrow {u_n} + {u_{n - 2}} = \left. {\frac{{{{\tan }^{n - 1}}\theta }}{{n - 1}}} \right|_0^{\frac{\pi }{4}} \cr & \Rightarrow {u_n} + {u_{n - 2}} = \frac{1}{{n - 1}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section