Question

If $$\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w $$   are non-coplanar vectors and $$p,\,q$$  are real numbers, then the equality $$\left[ {3\overrightarrow u \,p\overrightarrow v \,p\overrightarrow w } \right] - \left[ {p\overrightarrow v \,p\overrightarrow w \,q\overrightarrow u } \right] - \left[ {2\overrightarrow w \,q\overrightarrow v \,q\overrightarrow u } \right] = 0$$           holds for :

A. exactly two values of $$\left( {p,\,q} \right)$$
B. more than two but not all values of $$\left( {p,\,q} \right)$$
C. all values of $$\left( {p,\,q} \right)$$
D. exactly one value of $$\left( {p,\,q} \right)$$  
Answer :   exactly one value of $$\left( {p,\,q} \right)$$
Solution :
$$\because \,\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w $$   are non-coplanar vectors
$$\eqalign{ & \therefore \left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] \ne 0 \cr & {\text{Now, }}\left[ {3\overrightarrow u ,\,p\overrightarrow v ,\,p\overrightarrow w } \right] - \left[ {p\overrightarrow v ,\,p\overrightarrow w ,\,q\overrightarrow u } \right] - \left[ {2\overrightarrow w ,\,q\overrightarrow v ,\,q\overrightarrow u } \right] = 0 \cr & \Rightarrow 3{p^2}\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] - pq\left[ {\overrightarrow v ,\,\overrightarrow w ,\,\overrightarrow u } \right] - 2{q^2}\left[ {\overrightarrow w ,\,\overrightarrow v ,\,\overrightarrow u } \right] = 0 \cr & \Rightarrow 3{p^2}\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] - pq\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] + 2{q^2}\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] = 0 \cr & \Rightarrow \left( {3{p^2} - pq + 2{q^2}} \right)\left[ {\overrightarrow u ,\,\overrightarrow v ,\,\overrightarrow w } \right] = 0 \cr & \Rightarrow 3{p^2} - pq + 2{q^2} = 0 \cr & \Rightarrow 2{p^2} + {p^2} - pq + \frac{{{q^2}}}{4} + \frac{{7{q^2}}}{4} = 0 \cr & \Rightarrow 2{p^2} + {\left( {p - \frac{q}{2}} \right)^2} + \frac{7}{4}{q^2} = 0 \cr & \Rightarrow p = 0,\,q = 0,\,p = \frac{q}{2} \cr} $$
This is possible only when $$p = 0,\,q = 0$$
$$\therefore $$  There is exactly one value of $$\left( {p,\,q} \right)$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section