Question

If $$u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } $$           then the difference between the maximum and minimum values of $${u^2}$$ is given by

A. $${\left( {a - b} \right)^2}$$  
B. $$2\sqrt {{a^2} + {b^2}} $$
C. $${\left( {a + b} \right)^2}$$
D. $$2\left( {{a^2} + {b^2}} \right)$$
Answer :   $${\left( {a - b} \right)^2}$$
Solution :
$$\eqalign{ & {u^2} = {a^2} + {b^2} + 2\sqrt {\left( {{a^4} + {b^4}} \right){{\cos }^2}\theta {{\sin }^2}\theta + {a^2}{b^2}\left( {{{\cos }^4}\theta + {{\sin }^4}\theta } \right)} \,\,\,......\left( 1 \right) \cr & {\text{Now}}\,\left( {{a^4} + {b^4}} \right){\cos ^2}\theta {\sin ^2}\theta + {a^2}{b^2}\left( {{{\cos }^4}\theta + {{\sin }^4}\theta } \right) \cr & = \left( {{a^4} + {b^4}} \right){\cos ^2}\theta {\sin ^2}\theta + {a^2}{b^2}\left( {1 - 2{{\cos }^2}\theta {{\sin }^2}\theta } \right) \cr & = \left( {{a^4} + {b^4} - 2{a^2}{b^2}} \right){\cos ^2}\theta {\sin ^2}\theta + {a^2}{b^2} \cr & = {\left( {{a^2} - {b^2}} \right)^2}.\frac{{{{\sin }^2}2\theta }}{4} + {a^2}{b^2}\,\,\,.....\left( 2 \right) \cr & \because \,\,0 \leqslant {\sin ^2}2\theta \leqslant 1 \cr & \Rightarrow \,\,0 \leqslant {\left( {{a^2} - {b^2}} \right)^2}\frac{{{{\sin }^2}2\theta }}{4} \leqslant \frac{{{{\left( {{a^2} - {b^2}} \right)}^2}}}{4} \cr & \Rightarrow \,\,{a^2}{b^2} \leqslant {\left( {{a^2} - {b^2}} \right)^2}\frac{{{{\sin }^2}2\theta }}{4} + {a^2}{b^2} \leqslant {\left( {{a^2} - {b^2}} \right)^2}.\frac{1}{4} + {a^2}{b^2}\,\,\,\,\,.....\left( 3 \right) \cr} $$
∴ from (1), (2) and (3)
Minimum value of $${u^2} = {a^2} + {b^2} + 2\sqrt {{a^2}{b^2}} = {\left( {a + b} \right)^2}$$
Maximum value of $${u^2}$$
$$\eqalign{ & = {a^2} + {b^2} + 2\sqrt {{{\left( {{a^2} - {b^2}} \right)}^2}.\frac{1}{4} + {a^2}{b^2}} \cr & = {a^2} + {b^2} + \frac{2}{2}\sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \cr & = 2\left( {{a^2} + {b^2}} \right) \cr} $$
∴ Max value - Min value
$$\eqalign{ & = 2\left( {{a^2} + {b^2}} \right) - \left( {a + {b^2}} \right) \cr & = {\left( {a - b} \right)^2} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section