Question

If $$u = f\left( {{x^3}} \right),\,v = g\left( {{x^2}} \right),\,f'\left( x \right) = \cos \,x$$        and $$g'\left( x \right) = \sin \,x,$$   then $$\frac{{du}}{{dv}} = ?$$

A. $$\frac{1}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$
B. $$\frac{3}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$  
C. $$\frac{1}{2}x\,\sec \,{x^3}{\text{sin }}{x^2}$$
D. $$\frac{3}{2}x\,\sec \,{x^3}{\text{cosec }}{x^2}$$
Answer :   $$\frac{3}{2}x\,\cos \,{x^3}{\text{cosec }}{x^2}$$
Solution :
$$\eqalign{ & {\text{Here, }}u = f\left( {{x^3}} \right) \cr & \Rightarrow \frac{{du}}{{dx}} = f'\left( {{x^3}} \right).\frac{d}{{dx}}\left( {{x^3}} \right) \cr & = \left( {\cos \left( {{x^3}} \right)} \right).3{x^2} \cr & = 3{x^2}.\cos \,{x^3} \cr & {\text{and }}v = g\left( {{x^2}} \right) \cr & \Rightarrow \frac{{dv}}{{dx}} = g'\left( {{x^2}} \right).\frac{d}{{dx}}\left( {{x^2}} \right) \cr & = \left( {\sin \,{x^2}} \right).\left( {2x} \right) \cr & = 2x.\sin \,{x^2} \cr & \therefore \,\frac{{du}}{{dv}} = \frac{{\frac{{du}}{{dx}}}}{{\frac{{dv}}{{dx}}}}\frac{{3{x^2}.\cos \,{x^3}}}{{2x.\sin \,{x^2}}} \cr & \Rightarrow \frac{{du}}{{dv}} = \frac{3}{2}x.\cos \,{x^3}.{\text{cosec}}\,{x^2} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section