Question

If $${\hat u}$$ and $${\hat v}$$ are unit vectors and $$\theta $$ is the acute angle between them, then $$2\hat u \times 3\hat v$$   is a unit vector for :

A. no value of $$\theta $$
B. exactly one value of $$\theta $$  
C. exactly two values of $$\theta $$
D. more than two values of $$\theta $$
Answer :   exactly one value of $$\theta $$
Solution :
Given $$\left| {2\hat u \times 3\hat v} \right| = 1$$   and $$\theta $$ is acute angle between $${\hat u}$$ and $$\hat v,\,\,\left| {\hat u} \right| = 1,\,\,\left| {\hat v} \right| = 1$$
$$\eqalign{ & \Rightarrow 6\,\left| {\hat u} \right|\,\left| {\hat v} \right|\left| {\sin \,\theta } \right| = 1 \cr & \Rightarrow 6\left| {\sin \,\theta } \right| = 1 \cr & \Rightarrow \sin \,\theta = \frac{1}{6} \cr} $$
Hence, there is exactly one value of $$\theta $$ for which $$2\hat u \times 3\hat v$$   is a unit vector.

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section