Solution :
Let the $${B_H}$$ and $${B_V}$$ be the horizontal and vertical component of earth’s magnetic field $$B.$$

$$\tan \theta = \frac{{{B_V}}}{{{B_H}}} \Rightarrow \cot \theta = \frac{{{B_H}}}{{{B_V}}}\,......\left( {\text{i}} \right)$$
Let, plane 1 and 2 are mutually perpendicular planes making angle $$\theta $$ and $$\left( {{{90}^ \circ } - \theta } \right)$$ with magnetic meridian. The vertical component of earth of earth's magnetic field remain same in two plane but effective horizontal components in the two planes is given by
$$\eqalign{
& {B_1} = {B_H}\cos \theta '\,\,......\left( {{\text{ii}}} \right) \cr
& {\text{and}}\,\,{B_2} = {B_H}\sin \theta '\,\,......\left( {{\text{iii}}} \right) \cr
& {\text{Then,}}\,\,\tan {\theta _1} = \frac{{{B_V}}}{{{B_1}}} = \frac{{{B_V}}}{{{B_H}\cos \theta '}} \cr
& \cot {\theta _1} = \frac{{{B_H}\cos \theta '}}{{{B_V}}}\,......\left( {{\text{iv}}} \right) \cr} $$
Similarly,
$$\eqalign{
& \Rightarrow \tan {\theta _2} = \frac{{{B_V}}}{{{B_2}}} = \frac{{{B_V}}}{{{B_H}\sin \theta '}} \cr
& \Rightarrow \cot {\theta _2} = \frac{{{B_H}\sin \theta '}}{{{B_V}}}\,......\left( {\text{v}} \right) \cr} $$
From Eq. (iv) and Eq. (v)
$$\eqalign{
& \Rightarrow {\cot ^2}{\theta _1} + {\cot ^2}{\theta _2} = \frac{{B_H^2{{\cos }^2}\theta '}}{{B_V^2}} + \frac{{B_H^2{{\sin }^2}\theta '}}{{B_V^2}} \cr
& \Rightarrow {\cot ^2}{\theta _1} + {\cot ^2}{\theta _2} = \frac{{B_H^2}}{{B_V^2}}\left( {{{\cos }^2}\theta ' + {{\sin }^2}\theta '} \right) \cr
& \Rightarrow {\cot ^2}{\theta _1} + {\cot ^2}{\theta _2} = {\cot ^2}\theta \cr} $$