Question

If the vertices of a tetrahedron have the position vectors $$\overrightarrow 0 ,\,\overrightarrow i + \overrightarrow j ,\,2\overrightarrow j - \overrightarrow k $$     and $$\overrightarrow i + \overrightarrow k $$   then the volume of the tetrahedron is :

A. $$\frac{1}{6}$$  
B. $$1$$
C. $$2$$
D. none of these
Answer :   $$\frac{1}{6}$$
Solution :
3D Geometry and Vectors mcq solution image
Volume of the tetrahedron $$ = V = \left| {\frac{1}{6}\left[ {\overrightarrow {AB} \,\,\overrightarrow {AC} \,\,\overrightarrow {AO} } \right]} \right|$$
Now,
$$\eqalign{ & \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = 2\overrightarrow j - \overrightarrow k - \left( {\overrightarrow i + \overrightarrow j } \right) = - \overrightarrow i + \overrightarrow j - \overrightarrow k \cr & \overrightarrow {AC} = \overrightarrow {OC} - \overrightarrow {OA} = \overrightarrow i + \overrightarrow k - \left( {\overrightarrow i + \overrightarrow j } \right) = \overrightarrow k - \overrightarrow j \cr} $$
\[\therefore \,V = \left| {\frac{1}{6}\left[ { - \overrightarrow i + \overrightarrow j - \overrightarrow k \,\,\,\overrightarrow k - \overrightarrow j \,\,\, - \overrightarrow i - \overrightarrow j } \right]} \right| = \left| {\frac{1}{6}\left| \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\, - 1\\ \,\,\,\,\,\,0\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,1\\ - 1\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,\,0\, \end{array} \right|} \right| = \frac{1}{6}\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section