Question
      
        If the vectors $$\vec c,\,\vec a = x\hat i + y\hat j + z\hat k$$     and $$\hat b = \hat j$$  are such that $$\vec a,\,\vec c$$  and $${\vec b}$$ form aright handed system then $${\vec c}$$ is :      
       A.
        $$z\hat i - x\hat k$$                 
              
       B.
        $${\vec 0}$$              
       C.
        $$y\hat j$$              
       D.
        $$ - z\hat i + x\hat k$$              
            
                Answer :  
        $$z\hat i - x\hat k$$      
             Solution :
        Since $$\vec a,\,\vec c,\,\vec b$$  form a right handed system,
 
\[\therefore \,\,\,\vec c = \,\vec b \times \vec a = \left| \begin{array}{l}
\hat i\,\,\,\,\,\hat j\,\,\,\,\,\hat k\\
0\,\,\,\,\,1\,\,\,\,\,0\\
x\,\,\,\,\,y\,\,\,\,z
\end{array} \right| = z\hat i - x\hat k\]