Question

If the vectors $$\vec a = \hat i - \hat j + 2\hat k,\,\vec b = 2\hat i + 4\hat j + \,\hat k$$       and $$\vec c = \lambda \hat i + \hat j + \mu \hat k$$    are mutually orthogonal, then $$\left( {\lambda ,\,\mu } \right) = ?$$

A. $$\left( {2,\, - 3} \right)$$
B. $$\left( { - 2,\, 3} \right)$$
C. $$\left( {3,\, - 2} \right)$$
D. $$\left( { - 3,\, 2} \right)$$  
Answer :   $$\left( { - 3,\, 2} \right)$$
Solution :
Since, $$\vec a,\,\vec b$$  and $${\vec c}$$ are mutually orthogonal
$$\eqalign{ & \therefore \,\,\vec a.\vec b = 0,\,\,\vec b.\vec c = 0,\,\,\vec c.\vec a = 0 \cr & \Rightarrow 2\lambda + 4 + \mu = 0.....({\text{i}}) \cr & \Rightarrow \lambda - 1 + 2\mu = 0.....({\text{ii}}) \cr} $$
On solving (i) and (ii), we get $$\lambda = - 3,\,\,\mu = 2$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section