Question

If the tangent at $$\left( {1,\,7} \right)$$  to the curve $${x^2} = y - 6$$   touches the circle $${x^2} + {y^2} + 16x + 12y + c = 0$$       then the value of $$c$$ is :

A. $$185$$
B. $$85$$
C. $$95$$  
D. $$195$$
Answer :   $$95$$
Solution :
Equation of tangent at $$\left( {1,\,7} \right)$$  to $${x^2} = y - 6$$   is $$2x - y + 5 = 0.$$
Parabola mcq solution image
Now, perpendicular from centre $$O\left( { - 8,\, - 6} \right)$$   to $$2x-y+5=0$$    should be equal to radius of the circle
$$\eqalign{ & \therefore \left| {\frac{{ - 16 + 6 + 5}}{{\sqrt 5 }}} \right| = \sqrt {64 + 36 - C} \cr & \Rightarrow \sqrt 5 = \sqrt {100 - c} \cr & \Rightarrow c = 95 \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section