Question

If the sum to infinity of the series, $$1 + 4x + 7{x^2} + 10{x^3} + .....,\,{\text{is}}\frac{{35}}{{16}},$$       where $$\left| x \right| < 1,$$  then $$x$$ equals to

A. $$\frac{{19}}{7}$$
B. $$\frac{{1}}{5}$$  
C. $$\frac{{1}}{4}$$
D. None of these
Answer :   $$\frac{{1}}{5}$$
Solution :
$$\eqalign{ & S = 1 + 4x + 7{x^2} + 10{x^3} + ..... \cr & x.S = x + 4{x^2} + 7{x^3} + ..... \cr} $$
Subtract
$$\eqalign{ & S\left( {1 - x} \right) = 1 + 3x + 3{x^2} + 3{x^3} + ..... \cr & S\left( {1 - x} \right) = 1 + 3x\left( {\frac{1}{{1 - x}}} \right) \cr & \because \left| x \right| < 1 \cr & S = \frac{{1 + 2x}}{{{{\left( {1 - x} \right)}^2}}} \cr & {\text{Given : }}\frac{{1 + 2x}}{{{{\left( {1 - x} \right)}^2}}} = \frac{{35}}{{16}} \cr & \Rightarrow 16 + 32x = 35 + 35{x^2} - 70x \cr & \Rightarrow x = \frac{1}{5},\frac{{19}}{7} \cr & {\text{But, }}\left| x \right| < 1 \cr & \therefore x = \frac{1}{5} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section