Question

If the sum of the squares of the distance of the point $$\left( {x,\,y,\,z} \right)$$   from the points $$\left( {a,\,0,\,0} \right)$$   and $$\left( { - a,\,0,\,0} \right)$$   is $$2{c^2},$$  then which one of the following is correct ?

A. $${x^2} + {a^2} = 2{c^2} - {y^2} - {z^2}$$
B. $${x^2} + {a^2} = {c^2} - {y^2} - {z^2}$$  
C. $${x^2} - {a^2} = {c^2} - {y^2} - {z^2}$$
D. $${x^2} + {a^2} = {c^2} + {y^2} + {z^2}$$
Answer :   $${x^2} + {a^2} = {c^2} - {y^2} - {z^2}$$
Solution :
Let the point be $$P\left( {x,\,y,\,z} \right)$$   and two points, $$\left( {a,\,0,\,0} \right)$$   and $$\left( { - a,\,0,\,0} \right)$$   be a $$A$$ and $$B$$
As given in the problem,
$$\eqalign{ & P{A^2} + P{B^2} = 2{c^2} \cr & {\text{so, }}{\left( {x + a} \right)^2} + {\left( {y - 0} \right)^2} + {\left( {z - 0} \right)^2} + {\left( {x - a} \right)^2} + {\left( {y - 0} \right)^2} + {\left( {z - 0} \right)^2} = 2{c^2} \cr & {\text{or, }}{\left( {x + a} \right)^2} + {y^2} + {z^2} + {\left( {x - a} \right)^2} + {y^2} + {z^2} = 2{c^2} \cr & \Rightarrow {x^2} + 2a + {a^2} + {y^2} + {z^2} + {x^2} - 2a + {a^2} + {y^2} + {z^2} = 2{c^2} \cr & \Rightarrow 2\left( {{x^2} + {y^2} + {z^2} + {a^2}} \right) = 2{c^2} \cr & \Rightarrow {x^2} + {y^2} + {z^2} + {a^2} = {c^2} \cr & \Rightarrow {x^2} + {a^2} = {c^2} - {y^2} - {z^2} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section