Question

If the roots of the equation $$ax^2 – bx + c = 0$$    are $$\alpha , \beta$$  then the roots of the equation $${b^2}c{x^2} – a{b^2}x + {a^3} = 0$$     are

A. $$\frac{1}{{{\alpha ^3} + \alpha \beta }},\frac{1}{{{\beta ^3} + \alpha \beta }}$$
B. $$\frac{1}{{{\alpha ^2} + \alpha \beta }},\frac{1}{{{\beta ^2} + \alpha \beta }}$$  
C. $$\frac{1}{{{\alpha ^4} + \alpha \beta }},\frac{1}{{{\beta ^4} + \alpha \beta }}$$
D. None of these
Answer :   $$\frac{1}{{{\alpha ^2} + \alpha \beta }},\frac{1}{{{\beta ^2} + \alpha \beta }}$$
Solution :
Multiplying the second equation by $$\frac{c}{{{a^3}}},$$
we get, $$\frac{{{b^2}{c^2}}}{{{a^3}}}{x^2} - \frac{{{b^2}c}}{{{a^2}}}x + c = 0$$
$$\eqalign{ & \Rightarrow a{\left( {\frac{{bc}}{{{a^2}}}x} \right)^2} - b\left( {\frac{{bc}}{{{a^2}}}} \right)x + c = 0 \cr & \Rightarrow \frac{{bc}}{{{a^2}}}x = \alpha ,\beta \cr & \Rightarrow \left( {\alpha + \beta } \right)\alpha \beta x = \alpha ,\beta \cr & \Rightarrow x = \frac{1}{{\left( {\alpha + \beta } \right)\alpha }},\frac{1}{{\left( {\alpha + \beta } \right)\beta }} \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section