Question

If the point $${z_1} = 1 + i$$   where $$i = \sqrt { - 1} $$   is the reflection of a point $${z_2} = x + iy$$   in the line $$i\bar z - i\bar z = 5,$$   then the point $$z_2$$ is

A. $$1 + 4i$$  
B. $$4 + i$$
C. $$1 - i$$
D. $$- 1 - i$$
Answer :   $$1 + 4i$$
Solution :
Let $$z = a + bi$$
Complex Number mcq solution image
$$\eqalign{ & \Rightarrow \bar z = a - bi \cr & \therefore i\bar z - iz = i\left[ {\left( {a - bi} \right) - \left( {a + bi} \right)} \right] = 5 \cr & \Rightarrow i\left[ { - 2bi} \right] = 5 \cr & \Rightarrow b = \frac{5}{2} \cr} $$
So from figure it is clear that
$$\eqalign{ & x = 1,y = \frac{5}{2} + \frac{3}{2} = 4 \cr & {z_2} = 1 + 4i \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section