Question

If the point $$P\left( {x,\,y} \right)$$  is equidistant from the points $$A\left( {a + b,\,b - a} \right)$$    and $$B\left( {a - b,\,a + b} \right)$$    then :

A. $$ax = by$$
B. $$bx = ay{\text{ and }}P{\text{ can be }}\left( {a,\,b} \right)$$  
C. $${x^2} - {y^2} = 2\left( {ax + by} \right)$$
D. None of the above
Answer :   $$bx = ay{\text{ and }}P{\text{ can be }}\left( {a,\,b} \right)$$
Solution :
$$\eqalign{ & {\text{We have, }}PA = PB \cr & \Rightarrow {\left( {PA} \right)^2} = {\left( {PB} \right)^2} \cr & \Rightarrow {\left[ {x - \left( {a + b} \right)} \right]^2} + {\left[ {y - \left( {b - a} \right)} \right]^2} = {\left[ {x - \left( {a - b} \right)} \right]^2} + {\left[ {y - \left( {a + b} \right)} \right]^2} \cr & \Rightarrow {\left[ {\left( {x - a} \right) - b} \right]^2} + {\left[ {\left( {y - b} \right) + a} \right]^2} = {\left[ {\left( {x - a} \right) + b} \right]^2} + {\left[ {\left( {y - b} \right) - a} \right]^2} \cr & \Rightarrow {\left[ {\left( {x - a} \right) + b} \right]^2} - {\left[ {\left( {x - a} \right) - b} \right]^2} = {\left[ {\left( {y - b} \right) + a} \right]^2} - {\left[ {\left( {y - b} \right) - a} \right]^2} \cr & \Rightarrow 4b\left( {x - a} \right) = 4a\left( {y - b} \right) \cr & \Rightarrow bx = ay......\left( {\text{i}} \right) \cr} $$
Also, $$P\left( {a,\,b} \right)$$  satisfies the condition $$\left( {\text{i}} \right)$$ so that $$P$$ can be $$\left( {a,\,b} \right).$$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section