Question

If the $${p^{th}},\,{q^{th}}$$   and $${r^{th}}$$ terms of a G.P. are positive numbers $$a,\,b$$  and $$c$$ respectively, then find the angle between the vectors $$\log \,{a^2}\hat i + \log \,{b^2}\hat j + \log \,{c^2}\hat k$$       and $$\left( {q - r} \right)\hat i + \left( {r - p} \right)\hat j + \left( {p - q} \right)\hat k$$

A. $$\frac{\pi }{6}$$
B. $$\frac{\pi }{4}$$
C. $$\frac{\pi }{3}$$
D. $$\frac{\pi }{2}$$  
Answer :   $$\frac{\pi }{2}$$
Solution :
Let $$A$$ be the first term and $$x$$ the common ratio of G.P.
So, $$a = A{x^{p - 1}} \Rightarrow \log \,a = \log \,A + \left( {p - 1} \right)\log \,x$$
Similarly, $$\log \,b = \log \,A + \left( {q - 1} \right)\log \,x$$
and $$\log \,c = \log \,A + \left( {r - 1} \right)\log \,x$$
If $$\overrightarrow \alpha = \log \,{a^2}\hat i + \log \,{b^2}\hat j + \log \,{c^2}\hat k$$
and $$\overrightarrow \beta = \left( {q - r} \right)\hat i + \left( {r - p} \right)\hat j + \left( {p - q} \right)\hat k\,{\text{then}}$$
$$\eqalign{ & \overrightarrow \alpha .\overrightarrow \beta = 2\left[ {\log \,a\left( {q - r} \right) + \log \,b\left( {r - p} \right) + \log \,c\left( {p - q} \right)} \right] \cr & = 2\left[ {\left( {q - r} \right)\left\{ {\log \,A + \left( {p - 1} \right)\log \,x} \right\} + \left( {r - p} \right)\left\{ {\log \,A + \left( {q - 1} \right)\log \,x} \right\} + \left( {p - q} \right)\left\{ {\log \,A + \left( {r - 1} \right)\log \,x} \right\}} \right] \cr & = 2\left[ {\left( {q - r + r - p + p - q} \right)\log \,A + \left( {qp - pr - p + r + pr - pq - r + p + pr - qr - p + q} \right)\log \,x} \right] \cr & = 0 \cr} $$
Hence, the angle between $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$ is $$\frac{\pi }{2}.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section