Question
If the middle points of sides $$BC,\,CA\,\& \,AB$$ of triangle $$ABC$$ are respectively $$D,\,E,\,F$$ then position vector of centre of triangle $$DEF,$$ when position vector of $$A,\,B,\,C$$ are respectively $$\hat i + \hat j,\,\hat j + \hat k,\,\hat k + \hat i$$ is :
A.
$$\frac{1}{3}\left( {\hat i + \hat j + \hat k} \right)$$
B.
$$\left( {\hat i + \hat j + \hat k} \right)$$
C.
$$2\left( {\hat i + \hat j + \hat k} \right)$$
D.
$$\frac{2}{3}\left( {\hat i + \hat j + \hat k} \right)$$
Answer :
$$\frac{2}{3}\left( {\hat i + \hat j + \hat k} \right)$$
Solution :

The position vector of points $$D,\,E,\,F$$ are respectively
$$\frac{{\hat i + \hat j}}{2} + \hat k,\,\hat i + \frac{{\hat k + \hat j}}{2}{\text{ and }}\frac{{\hat i + \hat k}}{2} + \hat j$$
So, position vector of centre of $$\Delta DEF$$
$$\eqalign{
& = \frac{1}{3}\left[ {\frac{{\hat i + \hat j}}{2} + \hat k + \hat i + \frac{{\hat k + \hat j}}{2}{\text{ + }}\frac{{\hat i + \hat k}}{2} + \hat j} \right] \cr
& = \frac{2}{3}\left[ {\hat i + \hat j + \hat k} \right] \cr} $$