Question
If the LCM of $$p, q$$ is $${r^2}{t^4}{s^2},$$ where $$r, s, t$$ are prime numbers and $$p, q$$ are the positive integers then the number of ordered pair $$(p, q)$$ is
A.
252
B.
254
C.
225
D.
224
Answer :
225
Solution :
$$\because $$ $$r, s, t$$ are prime numbers,
∴ Section of $$(p, q)$$ can be done as follows
∴ $$r$$ can be selected 1 + 1 + 3 = 5 ways
\[\begin{array}{l}
\begin{array}{*{20}{c}}
p\\
{{r^0}}\\
{{r^1}}
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
q\\
{{r^2}}\\
{{r^2}}
\end{array}\\
\begin{array}{*{20}{c}}
{{r^2}}&{{r^0},{r^1},{r^2}}
\end{array}
\end{array}\]
Similarly $$s$$ and $$t$$ can be selected in 9 and 5 ways respectively .
∴ Total ways $$ = 5 \times 9 \times 5 = 225$$