Question

If the equations $$a\left( {y + z} \right) = x,b\left( {z + x} \right) = y$$      and $$c\left( {x + y} \right) = z,$$   where $$a \ne - 1,b \ne - 1,c \ne - 1,$$     admit of non-trivial solutions then $${\left( {1 + a} \right)^{ - 1}} + {\left( {1 + b} \right)^{ - 1}} + {\left( {1 + c} \right)^{ - 1}}$$       is

A. $$2$$  
B. $$1$$
C. $$\frac{1}{2}$$
D. None of these
Answer :   $$2$$
Solution :
$$a\left( {x + y + z} \right) = \left( {1 + a} \right)x,b\left( {x + y + z} \right) = \left( {1 + b} \right)y,c\left( {x + y + z} \right) = \left( {1 + c} \right)z.$$
In case of non-trivial solution, $$x + y + z \ne 0.$$
$$\therefore \,\,\frac{a}{{1 + a}} = \frac{x}{{x + y + z}},\,{\text{e}}{\text{.t}}{\text{.c}}{\text{.}}$$
Adding, $$\frac{a}{{1 + a}} + \frac{b}{{1 + b}} + \frac{c}{{1 + c}} = 1.$$
$$\therefore \,\,\left( {1 - \frac{1}{{1 + a}}} \right) + \left( {1 - \frac{1}{{1 + b}}} \right) + \left( {1 - \frac{1}{{1 + c}}} \right) = 1.$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section