Question

If the coefficients of $${r^{th}},{\left( {r + 1} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$     terms in the the binomial expansion of $${\left( {1 + y} \right)^{m}}$$  are in A.P., then $$m$$ and $$r$$ satisfy the equation

A. $${m^2} - m\left( {4r - 1} \right) + 4{r^2} - 2 = 0$$
B. $${m^2} - m\left( {4r + 1} \right) + 4{r^2} + 2 = 0$$
C. $${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$  
D. $${m^2} - m\left( {4r - 1} \right) + 4{r^2} + 2 = 0$$
Answer :   $${m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0$$
Solution :
$$\eqalign{ & {\text{Given,}}{{\text{ }}^m}{C_{r - 1}},{\,^m}{C_r},{\,^m}{C_{r + 1}}\,{\text{are in A}}{\text{.P}}{\text{.}} \cr & {{\text{2}}^m}{C_r} = {\,^m}{C_{r - 1}} + {\,^m}{C_{r + 1}} \cr & \Rightarrow 2 = \frac{{^m{C_{r - 1}}}}{{^m{C_r}}} + \frac{{^m{C_{r + 1}}}}{{^m{C_r}}} = \frac{r}{{m - r + 1}} + \frac{{m - r}}{{r + 1}} \cr & \Rightarrow {m^2} - m\left( {4r + 1} \right) + 4{r^2} - 2 = 0. \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section