Question

If the circles $${x^2} + {y^2} + 2x + 2ky + 6 = 0,\,\,{x^2} + {y^2} + 2ky + k = 0$$          intersect orthogonally, then $$k$$ is-

A. $$2\,\,{\text{or }} - \frac{3}{2}$$  
B. $$ - 2\,\,{\text{or }} - \frac{3}{2}$$
C. $$2\,\,{\text{or }}\frac{3}{2}$$
D. $$ - 2\,\,{\text{or }}\frac{3}{2}$$
Answer :   $$2\,\,{\text{or }} - \frac{3}{2}$$
Solution :
$$2{g_1}{g_2} + 2{f_1}{f_2} = {c_1} + {c_2}$$       (formula for orthogonal intersection of two cricles)
$$\eqalign{ & \Rightarrow 2(1)(0) + 2(k)(k) = 6 + k \cr & \Rightarrow 2{k^2} - k - 6 = 0 \cr & \Rightarrow k = - \frac{3}{2},\,\,2\, \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section