Question

If the centre of the sphere $$a{x^2} + b{y^2} + c{z^2} - 2x + 4y + 2z - 3 = 0$$         is $$\left( {\frac{1}{2},\, - 1,\, - \frac{1}{2}} \right),$$    what is the value of $$b\,?$$

A. $$1$$
B. $$ - 1$$
C. $$2$$  
D. $$ - 2$$
Answer :   $$2$$
Solution :
The given equation of sphere is
$$a{x^2} + b{y^2} + c{z^2} - 2x + 4y + 2z - 3 = 0$$
This equation represents a equation of sphere, if coefficient of $${x^2},{y^2}$$  and $${z^2}$$ is same.
i.e., $$a = b = c$$
$$\therefore $$  Equation of sphere can be re-written as
$$\eqalign{ & b{x^2} + b{y^2} + b{z^2} - 2x + 4y + 2z - 3 = 0 \cr & \Rightarrow {x^2} + {y^2} + {z^2} - \frac{{2x}}{b} + \frac{{4y}}{b} + \frac{{2z}}{b} - \frac{3}{b} = 0 \cr} $$
The centre of this sphere is $$\left( {\frac{1}{b},\,\frac{{ - 2}}{b},\,\frac{{ - 1}}{b}} \right)$$
Given that the centre of sphere is $$\left( {\frac{1}{2},\, - 1,\, - \frac{1}{2}} \right)$$
$$\frac{1}{b} = \frac{1}{2} \Rightarrow b = 2$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section