Question
If the Boolean expression $$\left( {p \oplus q} \right) \wedge \left( { \sim p \odot q} \right)$$ is equivalent to $$p \wedge q,$$ where $$ \oplus , \odot \in \left\{ { \wedge , \vee } \right\}$$ then the ordered pair $$\left( { \oplus , \odot } \right)$$ is:
A.
$$\left( { \vee , \wedge } \right)$$
B.
$$\left( { \vee , \vee } \right)$$
C.
$$\left( { \wedge , \vee } \right)$$
D.
$$\left( { \wedge , \wedge } \right)$$
Answer :
$$\left( { \wedge , \vee } \right)$$
Solution :
Check each option
$$\eqalign{
& \left( 1 \right)\,\,\left( {p \vee q} \right) \wedge \left( { \sim p \wedge q} \right) = \left( { \sim p \wedge q} \right) \cr
& \left( 2 \right)\,\,\left( {p \vee q} \right) \wedge \left( { \sim p \vee q} \right) = \left( {p \wedge \sim p} \right) \vee q \cr
& = F \vee q = q \cr
& \left( 3 \right)\,\,\left( {p \wedge q} \right) \wedge \left( { \sim p \vee q} \right) = \left( {p \wedge q \wedge \sim p} \right) \vee \left( {p \wedge q} \right) \wedge q \cr
& = F \vee \left( {p \wedge q} \right) = p \wedge q \cr
& \left( 4 \right)\,\,\left( {p \wedge q} \right) \wedge \left( { \sim p \wedge q} \right) = \left( {p \wedge \sim p} \right) \wedge q \cr
& = F \sim q = F \cr} $$