Solution :
Point of intersection of $${y^2} = 4ax$$ and $$y = ax$$ are $$\left( {0,\,0} \right)$$ and $$\left( {\frac{4}{a},\,4} \right)$$
-image.PNG)
$$\eqalign{
& {\text{Given,}}\,\int\limits_0^4 {\left[ {\frac{y}{a} - \frac{{{y^2}}}{{4a}}} \right]} dy = \frac{1}{3} \cr
& \Rightarrow \frac{8}{a} - \frac{1}{{12a}} \times 64 = \frac{1}{3} \cr
& \Rightarrow \frac{8}{{3a}} = \frac{1}{3} \cr
& \Rightarrow a = 8 \cr} $$
So, the parabola is $${y^2} = 32x$$
-image.PNG)
Area enclosed by $$y = 4x$$ is $$\int\limits_0^8 {\left[ {\frac{y}{4} - \frac{{{y^2}}}{{32}}} \right]} dy = \left[ {\frac{{{y^2}}}{8} - \frac{{{y^3}}}{{96}}} \right]_0^8 = \frac{8}{3}$$