Question

If the angles of a triangle are $${30^ \circ }$$ and $${45^ \circ }$$ and the included side is $$\left( {\sqrt 3 + 1} \right),$$   then what is the area of the tringle ?

A. $$\frac{{\sqrt 3 + 1}}{2}$$  
B. $${2\left( {\sqrt 3 + 1} \right)}$$
C. $$\frac{{\sqrt 3 + 1}}{3}$$
D. $$\frac{{\sqrt 3 - 1}}{2}$$
Answer :   $$\frac{{\sqrt 3 + 1}}{2}$$
Solution :
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & {\text{From, }}\Delta \,ADB,AD = BD = x \cr & {\text{In }}\Delta \,ADC, \cr & \tan {30^ \circ } = \frac{x}{{\sqrt 3 + 1 - x}} \cr & \Rightarrow \frac{1}{{\sqrt 3 }} = \frac{x}{{\sqrt 3 + 1 - x}} \cr & \Rightarrow \sqrt 3 \,x = \sqrt 3 + 1 - x \cr & \Rightarrow \left( {\sqrt 3 + 1} \right)x = \sqrt 3 + 1 \cr & x = \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}} \cr & {\text{Area of }}\Delta \,ABC = \frac{1}{2} \times \left( {\sqrt 3 + 1} \right) \times 1 = \frac{{\sqrt 3 + 1}}{2} \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section