Question

If the angle between the line $$x = \frac{{y - 1}}{2} = \frac{{z - 3}}{\lambda }$$    and the plane $$x+2y+3z=4$$    is $${\cos ^{ - 1}}\left( {\sqrt {\frac{5}{{14}}} } \right),$$    then $$\lambda $$ equals :

A. $$\frac{3}{2}$$
B. $$\frac{2}{5}$$
C. $$\frac{5}{3}$$
D. $$\frac{2}{3}$$  
Answer :   $$\frac{2}{3}$$
Solution :
If $$\theta $$ be the angle between the given line and plane, then
$$\sin \,\theta = \frac{{1 \times 1 + 2 \times 2 + \lambda \times 3}}{{\sqrt {{1^2} + {2^2} + {\lambda ^2}} .\sqrt {{1^2} + {2^2} + {3^2}} }} = \frac{{5 + 3\lambda }}{{\sqrt {14} .\sqrt {5 + {\lambda ^2}} }}$$
But it is given that $$\theta = {\cos ^{ - 1}}\sqrt {\frac{5}{{14}}} = \sin \,\theta = \frac{3}{{\sqrt {14} }}$$
$$\therefore \frac{{5 + 3\lambda }}{{\sqrt {14} .\sqrt {5 + {\lambda ^2}} }} = \frac{3}{{\sqrt {14} }}\,\,\,\,\,\,\,\,\,\, \Rightarrow \lambda = \frac{2}{3}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section