Question

If the $$\int {\frac{{5\,\tan \,x}}{{\tan \,x - 2}}dx} = x + a\,\ln \left| {\sin \,x - 2\cos \,x} \right| + k,$$          then $$a$$ is equal to:

A. $$ - 1$$
B. $$ - 2$$
C. $$1$$
D. $$2$$  
Answer :   $$2$$
Solution :
$$\eqalign{ & \int {\frac{{5\,\tan \,x}}{{\tan \,x - 2}}dx} = \int {\frac{{5\frac{{\sin \,x}}{{\cos \,x}}}}{{\frac{{\sin \,x}}{{\cos \,x}} - 2}}dx} \cr & = \int {\left( {\frac{{5\sin \,x}}{{\cos \,x}} \times \frac{{\cos \,x}}{{\sin \,x - 2\,\cos \,x}}} \right)dx} \cr & = \int {\frac{{5\sin \,x\,dx}}{{\sin \,x - 2\cos \,x}}} \cr & = \int {\left( {\frac{{4\sin \,x + \sin \,x + 2\cos \,x - 2\cos \,x}}{{\sin \,x - 2\cos \,x}}} \right)} dx \cr & = \int {\left( {\frac{{\left( {\sin \,x - 2\cos \,x} \right) + \left( {4sin\,x + 2\cos \,x} \right)}}{{\sin \,x - 2\cos \,x}}} \right)} dx \cr & = \int {\left( {\frac{{\left( {\sin \,x - 2\cos \,x} \right) + 2\left( {\cos \,x + 2\sin \,x} \right)}}{{\sin \,x - 2\cos \,x}}} \right)} dx \cr & = \int {\frac{{\sin \,x - 2\,\cos \,x}}{{\sin \,x - 2\cos \,x}}} dx + 2\int {\left( {\frac{{\cos \,x + 2\sin \,x}}{{\sin \,x - 2\cos \,x}}} \right)dx} \cr & = \int {dx + 2} \int {\frac{{\cos \,x + 2\sin \,x}}{{\sin \,x - 2\cos \,x}}dx} \cr & = {I_1} + {I_2} \cr & {\text{Where}}\,\,{I_1} = \int {dx} {\text{ and}} \cr & {I_2} = 2\int {\frac{{\cos \,x + 2\sin \,x}}{{\sin \,x - 2\cos \,x}}} dx \cr & {\text{Put }}\sin \,x - 2\cos \,x = t \cr & \Rightarrow \left( {\cos \,x + 2\sin \,x} \right)dx = dt \cr & \therefore {I_2} = 2\int {\frac{{dt}}{t} = 2\ln \,t + C = 2\,\ln \,} \left( {\sin \,x - 2\cos \,x} \right) + C \cr & {\text{Hence,}}\,\,{I_1} + {I_2} = \int {dx + 2\ln \left( {\sin \,x - 2\cos \,x} \right) + c} \cr & = x + 2\ln \left|( {\sin \,x - 2\cos \,x} \right)| + k\,\,\, \Rightarrow a = 2 \cr} $$

Releted MCQ Question on
Calculus >> Indefinite Integration

Releted Question 1

The value of the integral $$\int {\frac{{{{\cos }^3}x + {{\cos }^5}x}}{{{{\sin }^2}x + {{\sin }^4}x}}dx} $$    is-

A. $$\sin \,x - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
B. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + c$$
C. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
D. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + 5\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
Releted Question 2

If $$\int_{\sin \,x}^1 {{t^2}f\left( t \right)dt = 1 - \sin \,x} ,$$      then $$f\left( {\frac{1}{{\sqrt 3 }}} \right)$$   is-

A. $$\frac{1}{3}$$
B. $${\frac{1}{{\sqrt 3 }}}$$
C. $$3$$
D. $$\sqrt 3 $$
Releted Question 3

Solve this $$\int {\frac{{{x^2} - 1}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx} = ?$$

A. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^2}}} + C$$
B. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^3}}} + C$$
C. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{x} + C$$
D. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$
Releted Question 4

Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$  equals-

A. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} - {e^{2x}} + 1}}{{{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} + {e^x} + 1}}{{{e^{2x}} - {e^x} + 1}}} \right) + C$$
C. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$
D. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} + {e^{2x}} + 1}}{{{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$

Practice More Releted MCQ Question on
Indefinite Integration


Practice More MCQ Question on Maths Section