Question

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$  
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$
Answer :   $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
Solution :
Any tangent to ellipse $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = 1$$   is
$$\frac{{x\,\cos \,\theta }}{{\sqrt 2 }} + y\,\sin \,\theta = 1$$
Ellipse mcq solution image
$$\eqalign{ & \therefore A\left( {\sqrt 2 \,\sec \,\theta ,\,0} \right)\,;\,B\left( {0,\,{\text{cosec}}\,\theta } \right) \cr & \Rightarrow 2h = \sqrt 2 \,\sec \,\theta \,\,{\text{and}}\,\,2k = {\text{cosec}}\,\theta \left( {{\text{using mid pt}}{\text{. formula}}} \right) \cr & \Rightarrow \cos \,\theta = \frac{1}{{\sqrt 2 \,h}}{\text{ and }}\sin \,\theta = \frac{1}{{2k}} \cr & \Rightarrow {\left( {\frac{1}{{\sqrt 2 \,h}}} \right)^2} + {\left( {\frac{1}{{2k}}} \right)^2} = 1 \cr & \Rightarrow \frac{1}{{2{h^2}}} + \frac{1}{{4{k^2}}} = 1 \cr} $$
Required locus,
$$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section