Solution :
Any tangent to ellipse $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = 1$$ is
$$\frac{{x\,\cos \,\theta }}{{\sqrt 2 }} + y\,\sin \,\theta = 1$$

$$\eqalign{
& \therefore A\left( {\sqrt 2 \,\sec \,\theta ,\,0} \right)\,;\,B\left( {0,\,{\text{cosec}}\,\theta } \right) \cr
& \Rightarrow 2h = \sqrt 2 \,\sec \,\theta \,\,{\text{and}}\,\,2k = {\text{cosec}}\,\theta \left( {{\text{using mid pt}}{\text{. formula}}} \right) \cr
& \Rightarrow \cos \,\theta = \frac{1}{{\sqrt 2 \,h}}{\text{ and }}\sin \,\theta = \frac{1}{{2k}} \cr
& \Rightarrow {\left( {\frac{1}{{\sqrt 2 \,h}}} \right)^2} + {\left( {\frac{1}{{2k}}} \right)^2} = 1 \cr
& \Rightarrow \frac{1}{{2{h^2}}} + \frac{1}{{4{k^2}}} = 1 \cr} $$
Required locus,
$$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$