Question

If tangents are drawn from any point on the line $$x + 4a = 0$$   to the parabola $${y^2} = 4ax,$$   then their chord of contact subtends angle at the vertex equal to :

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{3}$$
C. $$\frac{\pi }{2}$$  
D. $$\frac{\pi }{6}$$
Answer :   $$\frac{\pi }{2}$$
Solution :
Let $$R\left( { - 4a,\,k} \right)$$   be any point on the line $$x = - 4a.$$   The equation of chord of contact $$PQ$$  w.r.t. $$P\left( { - 4a,\,k} \right)$$   is
Parabola mcq solution image
$$y.k = 2a\left( {x - 4a} \right)......\left( 1 \right)$$
Making equation of parabola $${y^2} = 4ax$$   homogeneous using $$\left( 1 \right),$$ we get
$$\eqalign{ & {y^2} = 4ax\left( {\frac{{2ax - yk}}{{8{a^2}}}} \right) \cr & \Rightarrow 8{a^2}{x^2} - 8{a^2}{y^2} - 4akxy = 0 \cr} $$
This represents the pair of straight lines $$AP$$  and $$AQ.$$  Since coefficient of $${x^2} + $$  coefficient of $${y^2} = 0$$
$$\therefore \,\angle PAQ = {90^ \circ }$$    i.e. chord of contact $$PQ$$  subtends a right angle at the vertex.

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section