Question

If $$\sin x + \sin y = a$$    and $$\cos x + \cos y = b,$$    then $${\tan ^2}\left( {\frac{{x + y}}{2}} \right) + {\tan ^2}\left( {\frac{{x - y}}{2}} \right)$$      is equal to

A. $$\frac{{{a^4} + {b^4} + 4{b^2}}}{{{a^2}{b^2} + {b^4}}}$$
B. $$\frac{{{a^4} - {b^4} + 4{b^2}}}{{{a^2}{b^2} + {b^4}}}$$  
C. $$\frac{{{a^4} - {b^4} + 4{a^2}}}{{{a^2}{b^2} + {a^4}}}$$
D. None of the above
Answer :   $$\frac{{{a^4} - {b^4} + 4{b^2}}}{{{a^2}{b^2} + {b^4}}}$$
Solution :
$$\eqalign{ & \sin x + \sin y = a \cr & \Rightarrow 2\sin \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x - y}}{2}} \right) = a\,\,\,.....\left( 1 \right) \cr & \cos x + \cos y = b \cr & \Rightarrow 2\cos \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x - y}}{2}} \right) = b\,\,\,.....\left( 2 \right) \cr} $$
dividing eq $$\left( 1 \right)\,\,\& \,\,\left( 2 \right)$$
$$\tan \left( {\frac{{x + y}}{2}} \right) = \frac{a}{b}$$
Squaring of eq (1) $$\&$$ (2) and adding -
$$\eqalign{ & 4\,{\cos ^2}\left( {\frac{{x - y}}{2}} \right) = {a^2} + {b^2} \cr & {\sec ^2}\left( {\frac{{x - y}}{2}} \right) = \frac{4}{{{a^2} + {b^2}}}\, \cr & {\text{again}} , \cr & {\tan ^2}\left( {\frac{{x + y}}{2}} \right) + {\tan ^2}\left( {\frac{{x - y}}{2}} \right) \cr & = {\left( {\frac{a}{b}} \right)^2} + {\sec ^2}\left( {\frac{{x - y}}{2}} \right) - 1 \cr & = \frac{{{a^2}}}{{{b^2}}} + \frac{4}{{{a^2} + {b^2}}} - 1 \cr & = \frac{{{a^4} - {b^4} + 4{b^2}}}{{{a^2}{b^2} + {b^4}}} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section