Question

If $${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \pi ,$$      then $${x^4} + {y^4} + {z^4} + 4{x^2}{y^2}{z^2} = k\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right).$$          where $$k =$$

A. 1
B. 2  
C. 4
D. None of these
Answer :   2
Solution :
$$\eqalign{ & {\text{We have, }}{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \pi - {\sin ^{ - 1}}z \cr & {\text{or, }}x\sqrt {\left( {1 - {y^2}} \right)} + y\sqrt {\left( {1 - {x^2}} \right)} = z \cr & {\text{or, }}{x^2}\left( {1 - {y^2}} \right) = {z^2} + {y^2}\left( {1 - {x^2}} \right) - 2yz\sqrt {\left( {1 - {x^2}} \right)} \cr & {\text{or, }}{\left( {{x^2} - {z^2} - {y^2}} \right)^2} = 4{y^2}{z^2}\left( {1 - {x^2}} \right) \cr & {\text{or, }}{x^4} + {y^2} + {z^4} - 2{x^2}{z^2} + 2{y^2}{z^2} - 2{x^2}{y^2} + 4{x^2}{y^2}{z^2} - 4{y^2}{z^2} = 0 \cr & {\text{or, }}{x^4} + {y^4} + {z^4} + 4{x^2}{y^2}{z^2} = 2\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right) \cr & \therefore k = 2 \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section