Question

If $${\sin ^{ - 1}}\frac{1}{x} = {\sin ^{ - 1}}\frac{1}{a} + {\sin ^{ - 1}}\frac{1}{b},$$      then the value of $$x$$ is

A. $$\frac{{ab}}{{\sqrt {{a^2} - 1} + \sqrt {{b^2} - 1} }}$$  
B. $$\frac{{ab}}{{\sqrt {{a^2} - 1} - \sqrt {{b^2} - 1} }}$$
C. $$\frac{{2ab}}{{\sqrt {{a^2} - 1} + \sqrt {{b^2} - 1} }}$$
D. None of these
Answer :   $$\frac{{ab}}{{\sqrt {{a^2} - 1} + \sqrt {{b^2} - 1} }}$$
Solution :
$$\eqalign{ & {\text{Let, }}{\sin ^{ - 1}}\frac{1}{a} = \theta ;{\sin ^{ - 1}}\frac{1}{b} = \phi {\text{ then }}{\sin ^{ - 1}}\frac{1}{x} = \theta + \phi \cr & \Rightarrow \sin {\sin ^{ - 1}}\frac{1}{x} = \sin \left( {\theta + \phi } \right) \cr & \Rightarrow \frac{1}{x} = \sin \theta \cos \phi + \cos \theta \sin \phi \cr & = \frac{1}{a}\sqrt {1 - \frac{1}{{{b^2}}}} + \sqrt {1 - \frac{1}{{{a^2}}}} \cdot \frac{1}{b} = \frac{{\sqrt {{b^2} - 1} }}{{ab}} + \frac{{\sqrt {{a^2} - 1} }}{{ab}} \cr & \Rightarrow x = \frac{{ab}}{{\sqrt {{a^2} - 1} + \sqrt {{b^2} - 1} }} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section