Question

If $${\sin ^{ - 1}}\left( {x - 1} \right) + {\cos ^{ - 1}}\left( {x - 3} \right) + {\tan ^{ - 1}}\left( {\frac{x}{{2 - {x^2}}}} \right) = {\cos ^{ - 1}}k + \pi ,$$             then the value of $$k$$ is

A. $$1$$
B. $$ - \frac{1}{{\sqrt 2 }}$$
C. $$ \frac{1}{{\sqrt 2 }}$$  
D. None of these
Answer :   $$ \frac{1}{{\sqrt 2 }}$$
Solution :
$$\eqalign{ & {\sin ^{ - 1}}\left( {x - 1} \right) \cr & \Rightarrow - 1 \leqslant x - 1 \leqslant 1 \cr & \Rightarrow 0 \leqslant x \leqslant 2 \cr & {\cos ^{ - 1}}\left( {x - 3} \right) \cr & \Rightarrow - 1 \leqslant x - 3 \leqslant 1 \cr & \Rightarrow 2 \leqslant x \leqslant 4 \cr & \therefore x = 2 \cr & {\text{So, }}{\sin ^{ - 1}}\left( {2 - 1} \right) + {\cos ^{ - 1}}\left( {2 - 3} \right) + {\tan ^{ - 1}}\frac{2}{{2 - 4}} = {\cos ^{ - 1}}k + \pi \cr & {\text{or, }}{\sin ^{ - 1}}1 + {\cos ^{ - 1}}\left( { - 1} \right) + {\tan ^{ - 1}}\left( { - 1} \right) = {\cos ^{ - 1}}k + \pi \cr & \Rightarrow \frac{\pi }{2} + \pi - \frac{\pi }{4} = {\cos ^{ - 1}}k + \pi \cr & \Rightarrow {\cos ^{ - 1}}k = \frac{\pi }{4}{\text{ or }}k = \frac{1}{{\sqrt 2 }} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section