Question

If $$\left( {\sec \,\alpha + \tan \,\alpha } \right)\left( {\sec \,\beta + \tan \,\beta } \right)\left( {\sec \,\gamma + \tan \,\gamma } \right) = \,\tan \,\alpha \,\tan \,\beta \,\tan \,\gamma ,$$              then expression $$\left( {\sec \,\alpha - \tan \,\alpha } \right)\left( {\sec \,\beta - \tan \,\beta } \right)\left( {\sec \,\gamma - \tan \,\gamma } \right)$$          is equal to

A. $$\cot \alpha \cot \beta \cot \gamma $$  
B. $$\tan \alpha \tan \beta \tan \gamma $$
C. $$\cot \alpha + \cot \beta + \cot \gamma $$
D. $$\tan \alpha + \tan \beta + \tan \gamma $$
Answer :   $$\cot \alpha \cot \beta \cot \gamma $$
Solution :
$$\eqalign{ & \left( {\sec \,\alpha + \tan \,\alpha } \right)\left( {\sec \,\beta + \tan \,\beta } \right)\left( {\sec \,\gamma + \tan \,\gamma } \right) = \,\tan \,\alpha \,\tan \,\beta \,\tan \,\gamma \cr & \Rightarrow \,\left( {{{\sec }^2}\,\alpha - {{\tan }^2}\alpha } \right)\left( {{{\sec }^2}\beta - {{\tan }^2}\beta } \right)\left( {{{\sec }^2}\gamma - {{\tan }^2}\gamma } \right) \cr & = \tan \alpha \,\tan\beta \,\tan \gamma \left( {\sec \alpha - \tan \alpha } \right)\left( {\sec \beta - \tan\beta } \right)\left( {\sec \gamma - \tan \gamma } \right) \cr & \Rightarrow \,\left( {\sec \alpha - \tan \alpha } \right)\left( {\sec \beta - \tan\beta } \right)\left( {\sec \gamma - \tan \gamma } \right) \cr & = \cot \alpha \cot \beta \,\cot \gamma \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section