Question

If $${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $$   and $${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $$   , then $$\frac{{{t_n}}}{{{S_n}}}$$ is equal to

A. $$\frac{{2n - 1}}{2}$$
B. $$\frac{1}{2}n - 1$$
C. $$n - 1$$
D. $$\frac{1}{2}n$$  
Answer :   $$\frac{1}{2}n$$
Solution :
$$\eqalign{ & {S_n} = \frac{1}{{^n{C_0}}} + \frac{1}{{^n{C_1}}} + \frac{1}{{^n{C_2}}} + ..... + \frac{1}{{^n{C_n}}} \cr & {t_n} = \frac{0}{{^n{C_0}}} + \frac{1}{{^n{C_1}}} + \frac{2}{{^n{C_2}}} + ..... + \frac{n}{{^n{C_n}}} \cr & {t_n} = \frac{n}{{^n{C_n}}} + \frac{{n - 1}}{{^n{C_{n - 1}}}} + \frac{{n - 2}}{{^{^n}{C_{n - 2}}}} + ..... + \frac{0}{{^n{C_0}}} \cr & {\text{Add,}}\,\,{{2}}{{{t}}_n} = \left( n \right)\left[ {\frac{1}{{^n{C_0}}} + \frac{1}{{^n{C_1}}} + .....\frac{1}{{^n{C_n}}}} \right] = n{S_n} \cr & \therefore \,\,\frac{{{t_n}}}{{{S_n}}} = \frac{n}{2} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section