Question

If $$R = \left\{ {\left( {x,\,y} \right):x,\,y\, \in \,I{\text{ and }}{x^2} + {y^2} \leqslant 4} \right\}$$        is a relation in $$I,$$ the domain of $$R$$ is :

A. $$\left\{ {0,\,1,\,2} \right\}$$
B. $$\left\{ { - 2,\, - 1,\,0} \right\}$$
C. $$\left\{ { - 2,\, - 1,\,0,\,1,\,2} \right\}$$  
D. $$I$$
Answer :   $$\left\{ { - 2,\, - 1,\,0,\,1,\,2} \right\}$$
Solution :
$${x^2} + {y^2} \leqslant 4,$$   represents all points interior to the circle $${x^2} + {y^2} = 4,$$   hence $$ - 2 \leqslant x \leqslant 2$$   and $$ - 2 \leqslant y \leqslant 2$$
$$\therefore $$  integral values of $$x$$ are $$ - 2,\, - 1,\,0,\,1,\,2$$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section