Question

If $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \lambda \left( {\hat i - \hat j + \hat k} \right)$$       and $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \mu \left( {\hat i + \hat j - \hat k} \right)$$       are two lines, then the equation of acute angle bisector of two lines is :

A. $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j - \hat k} \right)$$  
B. $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {2\hat i} \right)$$
C. $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j + \hat k} \right)$$
D. None of these
Answer :   $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j - \hat k} \right)$$
Solution :
Lines are $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \lambda \left( {\hat i - \hat j + \hat k} \right)$$       and $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \mu \left( {\hat i + \hat j - \hat k} \right)$$
along vectors $$\left( {\hat i - \hat j + \hat k} \right)$$   and $$\left( {\hat i + \hat j - \hat k} \right)$$   respectively.
Angle between two lines
$$\eqalign{ & = {\cos ^{ - 1}}\left( {\frac{{\left( 1 \right) \times \left( 1 \right) + \left( { - 1} \right) \times \left( 1 \right) + \left( 1 \right) \times \left( { - 1} \right)}}{{\sqrt 3 \,\sqrt 3 }}} \right) \cr & = {\cos ^{ - 1}}\left( { - \frac{1}{{\sqrt 3 }}} \right) \cr} $$
Which is an obtuse angle.
$$\therefore $$  Vector along acute angle bisector
$$\eqalign{ & = \lambda \left[ {\frac{{\hat i - \hat j + \hat k}}{{\sqrt 3 }} - \frac{{\hat i + \hat j - \hat k}}{{\sqrt 3 }}} \right] \cr & = \frac{{2\lambda }}{{\sqrt 3 }}\left( { - \hat j + \hat k} \right) \cr} $$
$$\therefore $$  Equation of acute angle bisector
$$ = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j - \hat k} \right)$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section