Question

If $${p_n} = {\cos ^n}\theta + {\sin ^n}\theta ,$$    then $${p_n} - {p_{n - 2}} = k{p_{n - 4}},$$    where :

A. $$k = 1$$
B. $$k = - {\sin ^2}\theta \,{\cos ^2}\theta $$  
C. $$k = {\sin ^2}\theta $$
D. $$k = {\cos ^2}\theta $$
Answer :   $$k = - {\sin ^2}\theta \,{\cos ^2}\theta $$
Solution :
$$\eqalign{ & {p_n} - {p_{n - 2}} = \left( {{{\cos }^n}\theta + {{\sin }^n}\theta } \right) - \left( {{{\cos }^{n - 2}}\theta + {{\sin }^{n - 2}}\theta } \right) \cr & = {\cos ^{n - 2}}\theta \left( {{{\cos }^2}\theta - 1} \right) + {\sin ^{n - 2}}\theta \left( {{{\sin }^2}\theta - 1} \right) \cr & = - {\sin ^2}\theta \,{\cos ^{n - 2}}\theta - {\cos ^2}\theta \,{\sin ^{n - 2}}\theta \cr & = - {\sin ^2}\theta \,{\cos ^2}\theta \left( {{{\cos }^{n - 4}}\theta + {{\sin }^{n - 4}}\theta } \right) \cr & = - {\sin ^2}\theta \,{\cos ^2}\theta {p_{n - 4}} = k{p_{n - 4}} \cr & \Rightarrow k = - {\sin ^2}\theta \,{\cos ^2}\theta \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section