Question

If $$\overrightarrow p = \lambda \left( {\overrightarrow u \times \overrightarrow v } \right) + \mu \left( {\overrightarrow v \times \overrightarrow w } \right) + \nu \left( {\overrightarrow w \times \overrightarrow u } \right)$$          and $$\left[ {\overrightarrow u \overrightarrow v \overrightarrow w } \right] = \frac{1}{5},$$    then $$\lambda + \mu + \nu $$   is equal to :

A. 5
B. 10
C. 15
D. none of these  
Answer :   none of these
Solution :
$$\eqalign{ & \overrightarrow p = \lambda \left( {\overrightarrow u \times \overrightarrow v } \right) + \mu \left( {\overrightarrow v \times \overrightarrow w } \right) + \nu \left( {\overrightarrow w \times \overrightarrow u } \right) \cr & \Rightarrow \overrightarrow p .\overrightarrow w = \lambda \left( {\overrightarrow u \times \overrightarrow v } \right).\overrightarrow w + \mu \left( {\overrightarrow v \times \overrightarrow w } \right).\overrightarrow w + \nu \left( {\overrightarrow w \times \overrightarrow u } \right).\overrightarrow w \cr & \Rightarrow \lambda \left[ {\overrightarrow u \overrightarrow v \overrightarrow w } \right] + 0 + 0 = \frac{\lambda }{5} \cr & \Rightarrow \lambda = 5\left( {\overrightarrow p .\overrightarrow w } \right) \cr & {\text{Similarly, }}\mu = 5\left( {\overrightarrow p .\overrightarrow u } \right){\text{ and }}\nu = 5\left( {\overrightarrow p .\overrightarrow v } \right) \cr & \therefore \,\lambda + \mu + \nu \cr & = 5\left( {\overrightarrow p .\overrightarrow w } \right) + 5\left( {\overrightarrow p .\overrightarrow u } \right) + 5\left( {\overrightarrow p .\overrightarrow v } \right) \cr & = 5\overrightarrow p \left( {\overrightarrow u + \overrightarrow v + \overrightarrow w } \right) \cr & {\text{Hence, }}\lambda + \mu + \nu {\text{ depends on the vectors}}{\text{.}} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section