Question

If \[P = \left[ \begin{array}{l} \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]{\rm{and}}\]     \[A = \left[ \begin{array}{l} 1\,\,\,\,\,\,\,1\\ 0\,\,\,\,\,\,1 \end{array} \right]{\rm{ and}}\]    $$Q = PA{P^T}{\text{ and }}x = {P^T}{Q^{2005}}P$$       then $$x$$ is equal to

A. \[\left[ \begin{array}{l} 1\,\,\,\,\,\,\,\,\,2005\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,1 \end{array} \right]\]  
B. \[\left[ \begin{array}{l} 4 + 2005\sqrt 3 \,\,\,\,\,\,\,\,\,\,\,\,\,6015\\ \,\,\,\,\,2005\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4 - 2005\sqrt 3 \end{array} \right]\]
C. \[\frac{1}{4}\left[ \begin{array}{l} 2 + \sqrt 3 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ \,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 - \sqrt 3 \end{array} \right]\]
D. \[\frac{1}{4}\left[ \begin{array}{l} 2005\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 - \sqrt 3 \\ 2 + \sqrt 3 \,\,\,\,\,\,\,\,\,2005 \end{array} \right]\]
Answer :   \[\left[ \begin{array}{l} 1\,\,\,\,\,\,\,\,\,2005\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,1 \end{array} \right]\]
Solution :
\[\begin{array}{l} {\rm{Now,\, }}{P^T}P = \left[ \begin{array}{l} \frac{{\sqrt 3 }}{2}\,\,\,\,\, - \frac{1}{2}\\ \frac{1}{2}\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\left[ \begin{array}{l} - \frac{{\sqrt 3 }}{2}\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\\ \Rightarrow {P^T}P = \left[ \begin{array}{l} 1\,\,\,\,\,1\\ 0\,\,\,\,\,1 \end{array} \right]\\ \Rightarrow {P^T}P = I\\ \Rightarrow {P^T} = {P^{ - I}}\\ {\rm{Since,\, }}Q = PA{P^T}\\ \therefore \,{P^T}{Q^{2005}}P = {P^T}\left[ {\left( {PA{P^T}} \right)\left( {PA{P^T}} \right)......\,2005{\rm{ \,times}}} \right]P\\ = \frac{{\left( {PA{P^T}} \right)A\left( {PA{P^T}} \right)A\left( {PA{P^T}} \right)......\left( {PA{P^T}} \right)A\left( {PA{P^T}} \right)}}{{2005{\rm{ \,times}}}}\\ = I{A^{2005}} = {A^{2005}}\\ \therefore \,{A^1} = \left[ \begin{array}{l} 1\,\,\,\,\,1\\ 0\,\,\,\,\,1 \end{array} \right]\\ {A^2} = \left[ \begin{array}{l} 1\,\,\,\,\,1\\ 0\,\,\,\,\,1 \end{array} \right]\left[ \begin{array}{l} 1\,\,\,\,\,1\\ 0\,\,\,\,\,1 \end{array} \right] = \left[ \begin{array}{l} 1\,\,\,\,\,2\\ 0\,\,\,\,\,1 \end{array} \right]\\ {A^3} = \left[ \begin{array}{l} 1\,\,\,\,\,2\\ 0\,\,\,\,\,1 \end{array} \right]\left[ \begin{array}{l} 1\,\,\,\,\,1\\ 0\,\,\,\,\,1 \end{array} \right] = \left[ \begin{array}{l} 1\,\,\,\,\,3\\ 0\,\,\,\,\,1 \end{array} \right]\\ {A^{2005}} = \left[ \begin{array}{l} 1\,\,\,\,\,2005\\ 0\,\,\,\,\,\,\,\,1 \end{array} \right]\\ \therefore \,{P^T}{Q^{2005}}P = \left[ \begin{array}{l} 1\,\,\,\,\,2005\\ 0\,\,\,\,\,\,\,\,1 \end{array} \right]\\ {\rm{Therefore\, option\, A\, is\, the\, right\, answer}}{\rm{.}} \end{array}\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section