Question

If \[P = \left[ {\begin{array}{*{20}{c}} {\cos \left( {\frac{\pi }{6}} \right)}&{\sin \left( {\frac{\pi }{6}} \right)}\\ { - \sin \left( {\frac{\pi }{6}} \right)}&{\cos \left( {\frac{\pi }{6}} \right)} \end{array}} \right],A = \left[ {\begin{array}{*{20}{c}} 0&1\\ 0&0 \end{array}} \right]\]        and $$Q = PAP'$$   then $$P'Q^{2007}P$$   is equal to

A. \[\left[ {\begin{array}{*{20}{c}} 1&{2007}\\ 0&1 \end{array}} \right]\]  
B. \[\left[ {\begin{array}{*{20}{c}} 1&{\frac{{\sqrt 3 }}{2}}\\ 0&{2007} \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}}&{2007}\\ 0&1 \end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}} {\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}\\ 1&{2007} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 1&{2007}\\ 0&1 \end{array}} \right]\]
Solution :
Note that, $$P' = {P^{ - 1}}$$
$$\eqalign{ & {\text{Now, }}Q = PAP' = PA{P^{ - 1}} \cr & \Rightarrow {Q^{2007}} = P{A^{2007}}{P^{ - 1}} \cr & \therefore P'{Q^{2007}}P = {P^{ - 1}}\left( {P{A^{2007}}{P^{ - 1}}} \right)P = {A^{2007}} = {\left( {I + B} \right)^{2007}} \cr} $$
where, \[B = \left[ {\begin{array}{*{20}{c}} 0&1\\ 0&0 \end{array}} \right].\]
As, $$B^2 = 0,$$  we get $${B^r} = 0\forall r \geqslant 2.$$
Thus, by binomial theorem,
\[{A^{2007}} = I + 2007B = \left[ {\begin{array}{*{20}{c}} 1&{2007}\\ 0&1 \end{array}} \right]\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section