Question

If $$\overrightarrow p $$ and $$\overrightarrow q $$ are two unit vectors inclined at an angle $$\alpha $$ to each other then $$\left| {\overrightarrow p + \overrightarrow q } \right| < 1$$   if :

A. $$\frac{{2\pi }}{3} < \alpha < \frac{{4\pi }}{3}$$  
B. $$\frac{{4\pi }}{3} < \alpha < 2\pi $$
C. $$0 < \alpha < \frac{\pi }{3}$$
D. $$\alpha = \frac{\pi }{2}$$
Answer :   $$\frac{{2\pi }}{3} < \alpha < \frac{{4\pi }}{3}$$
Solution :
$$\eqalign{ & \left| {\overrightarrow p + \overrightarrow q } \right| = \left( {\overrightarrow p + \overrightarrow q } \right).\left( {\overrightarrow p + \overrightarrow q } \right) \cr & = {\left| {\overrightarrow p } \right|^2} + {\left| {\overrightarrow q } \right|^2} + 2\overrightarrow p .\overrightarrow q \cr & = 2 + 2\,\cos \,\alpha , \cr & {\text{where }}\alpha {\text{ is the angle between}}\overrightarrow p {\text{ and }}\overrightarrow q \cr & = 2\left( {1 + \cos \,\alpha } \right) \cr & = 4\,{\cos ^2}\left( {\frac{\alpha }{2}} \right) \cr & {\left| {\overrightarrow p + \overrightarrow q } \right|^2} < 1 \cr & \Rightarrow \left( {4\,{{\cos }^2}\frac{\alpha }{2} - 1} \right) < 0 \cr & \Rightarrow \left( {2\,\cos \frac{\alpha }{2} - 1} \right)\left( {2\,\cos \frac{\alpha }{2} + 1} \right) < 0,\, - \frac{1}{2} < \cos \frac{\alpha }{2} < \frac{1}{2} \cr & \Rightarrow \frac{\pi }{3} < \frac{\alpha }{2} < \frac{{2\pi }}{3} \cr & \Rightarrow \frac{{2\pi }}{3} < \alpha < \frac{{4\pi }}{3} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section