Question

If $$P\left( {3,\,2,\, - 4} \right),\,Q\left( {5,\,4,\, - 6} \right)$$      and $$R\left( {9,\,8,\, - 10} \right)$$   are collinear, then $$R$$ divides $$PQ$$  in the ratio :

A. $$3 : 2$$  internally
B. $$3 : 2$$  externally  
C. $$2 : 1$$  internally
D. $$2 : 1$$  externally
Answer :   $$3 : 2$$  externally
Solution :
Suppose $$R$$ divides $$PQ$$ in the ration $$\lambda :1.$$
Then, the coordinates of $$R$$ are
$$\left( {\frac{{5\lambda + 3}}{{\lambda + 1}},\,\frac{{4\lambda + 2}}{{\lambda + 1}},\,\frac{{ - 6\lambda - 4}}{{\lambda + 1}}} \right)$$
But, the coordinates of $$R$$ are given as $$\left( {9,\,8,\, - 10} \right)$$
$$\eqalign{ & \therefore \,\frac{{5\lambda + 3}}{{\lambda + 1}} = 9,\,\frac{{4\lambda + 2}}{{\lambda + 1}} = 8{\text{ and }} \cr & \frac{{ - 6\lambda - 4}}{{\lambda + 1}} = - 10 \Rightarrow \lambda = - \frac{3}{2} \cr} $$
Hence, $$R$$ divides $$PQ$$  externally in the ratio $$3 : 2$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section