Question

If $$\operatorname{Re} \left( {\frac{{z + 4}}{{2z - i}}} \right) = \frac{1}{2}$$    then $$z$$ is represented by a point lying on

A. a circle
B. an ellipse
C. a straight line  
D. none of these
Answer :   a straight line
Solution :
$$\eqalign{ & \frac{{z + 4}}{{2z - i}} = \frac{{\left( {x + 4} \right) + iy}}{{2x + i\left( {2y - 1} \right)}} = \frac{{\left\{ {\left( {x + 4} \right) + iy} \right\}\left\{ {2x - i\left( {2y - 1} \right)} \right\}}}{{\left\{ {2x + i\left( {2y - 1} \right)} \right\}\left\{ {2x - i\left( {2y - 1} \right)} \right\}}} \cr & \frac{{z + 4}}{{2z - i}} = \frac{{2x\left( {x + 4} \right) + y\left( {2y - 1} \right) + i\left\{ {2xy - \left( {x + 4} \right)\left( {2y - 1} \right)} \right\}}}{{4{x^2} + {{\left( {2y - 1} \right)}^2}}} \cr & \operatorname{Re} \left( {\frac{{z + 4}}{{2z - i}}} \right) = \frac{1}{2} \cr & \Rightarrow \,\,\frac{{2x\left( {x + 4} \right) + y\left( {2y - 1} \right)}}{{4{x^2} + {{\left( {2y - 1} \right)}^2}}} = \frac{1}{2} \cr} $$
$$ \Rightarrow {\kern 1pt} \,\,16x + 2y = 1,$$    which represents a straight line.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section