Question
If $$\operatorname{Re} \left( {\frac{{z - 1}}{{z + 1}}} \right) = 0,$$ where $$2 = x + iy$$ is a complex number, then which one of the following is correct ?
A.
$$z = 1 + i$$
B.
$$\left| z \right| = 2$$
C.
$$z = 1 - i$$
D.
$$\left| z \right| = 1$$
Answer :
$$\left| z \right| = 1$$
Solution :
$$\eqalign{
& \frac{{z - 1}}{{z + 1}} = \frac{{x + iy - 1}}{{x + iy + 1}} \cr
& \frac{{z - 1}}{{z + 1}} = \frac{{{x^2} + {y^2} - 1 + 2iy}}{{{x^2} + {y^2} + 2x + 1}} \cr
& \Rightarrow \,\operatorname{Re} \left( {\frac{{z - 1}}{{z + 1}}} \right) = \frac{{{x^2} + {y^2} - 1}}{{{x^2} + {y^2} + 2x + 1}} = 0 \cr
& \Rightarrow \,{x^2} + {y^2} - 1 = 0 \cr
& \Rightarrow \,{x^2} + {y^2} = 1 \cr
& {\text{Also}},\,\,z\bar z = {x^2} + {y^2} = 1 \cr
& {\text{and}}\,\,z\bar z = {\left| z \right|^2} \cr
& \Rightarrow \,{\left| z \right|^2} = 1 \cr
& \Rightarrow \,\left| z \right| = 1 \cr} $$